

Pre-training Graph Neural Networks for Molecular Representations

Jun Xia

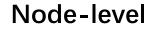
Westlake University & Zhejiang University

Homepage: <u>https://junxia97.github.io/</u>

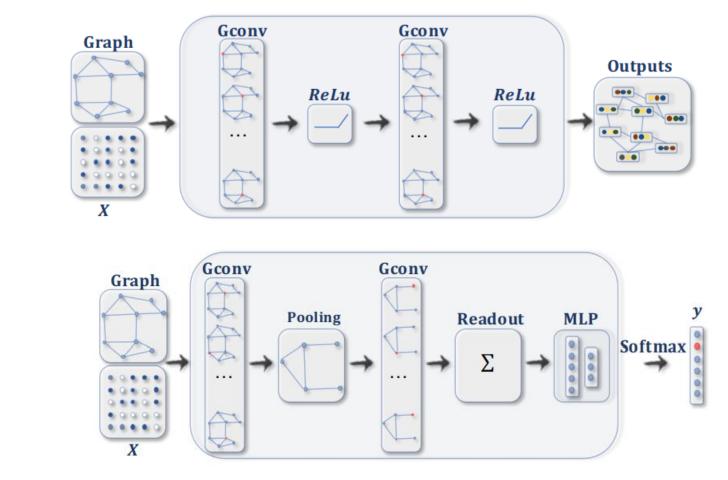
- Backgrounds
- Encoder Architectures
- Pre-training Strategies
- Tuning Strategies
- Applications
- Conclusions & Future Outlooks

Backgrounds

• Graph Neural Networks (GNNs)

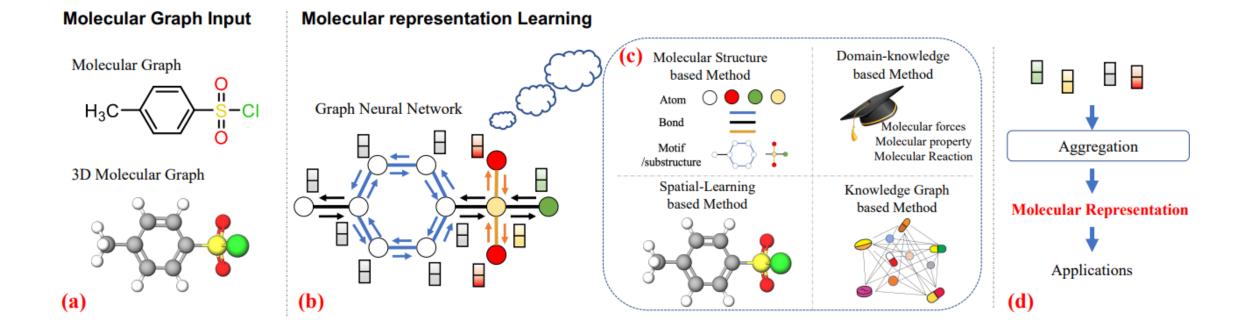


Graph-level



A Comprehensive Survey on Graph Neural Networks (Wu et al., TNNLS 2019)

Graph-based Molecular Representation Learning (Guo et al., ArXiv 2022)



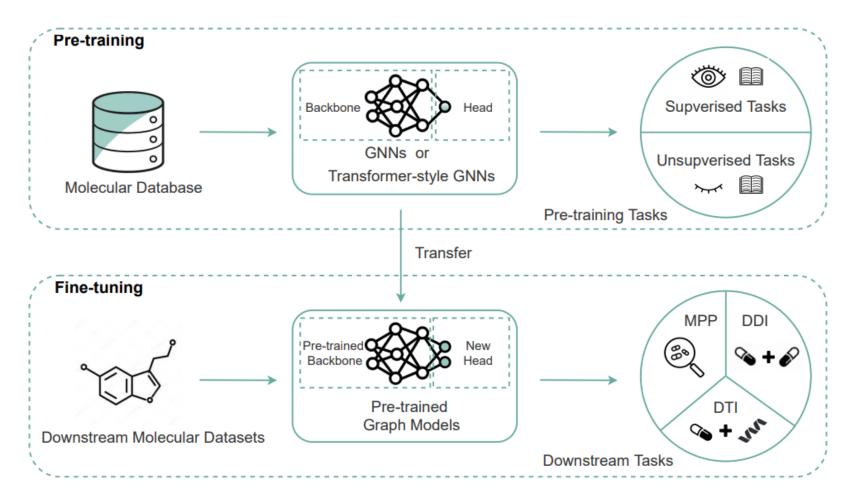
GNNs for Molecular Representation Learning

Backgrounds

- Two fundamental challenges in applying GNNs to drug discovery
 - a. The scarcity of labeled data
 - ✓ Obtaining labels for molecules requires expensive wet-lab experiments

- b. Out-of-distribution prediction
 - \checkmark Predicting the properties of novel molecules

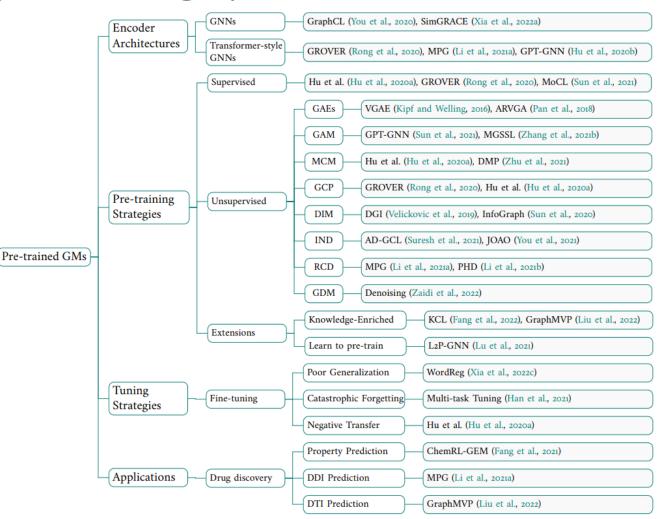
Pretraining-then-finetuning paradigm for Molecular Graphs



Pre-training Graph Neural Networks for Molecular Representations: Retrospect and Prospect (Xia et al., Ai for Science @ ICML 2022)

Backgrounds

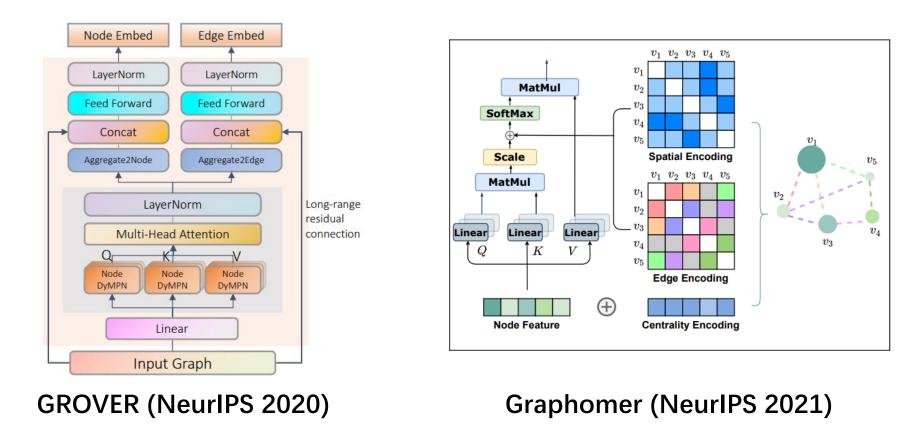
Taxonomy of pre-trained graph models for molecules



- Backgrounds
- Encoder Architectures
- Pre-training Strategies
- Tuning Strategies
- Applications
- Conclusions & Future Outlooks

Encoder Architectures

Transformer-style GNNs: Research Hotspot



Self-Supervised Graph Transformer on Large-Scale Molecular Data (Rong et al., NeurIPS 2020)

Do Transformers Really Perform Bad for Graph Representation? (Ying et al., NeurIPS 2021)

- Backgrounds
- Encoder Architectures
- Pre-training Strategies
- Tuning Strategies
- Applications
- Conclusions & Future Outlooks

Supervised pre-training strategies

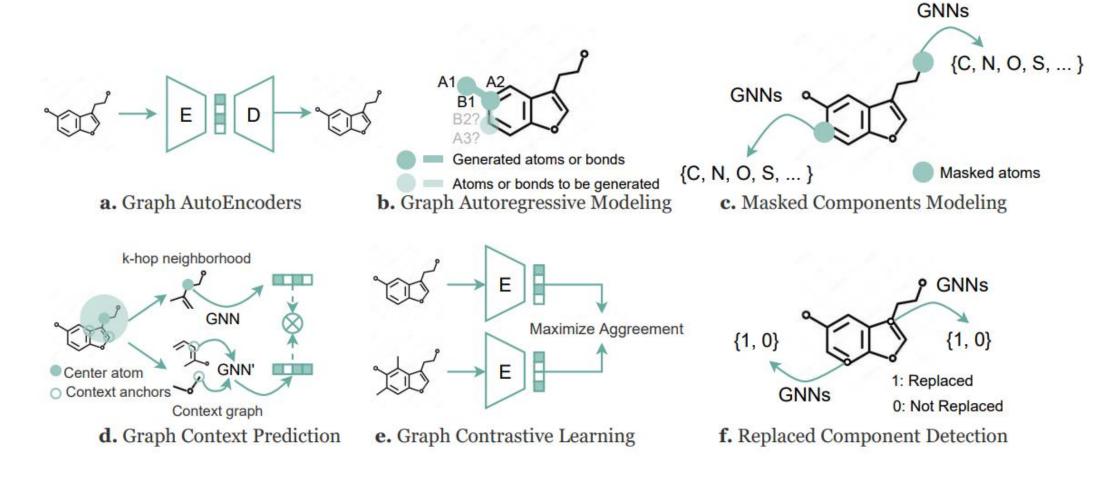
a. Expensive labels

✓ Obtaining labels for molecules requires expensive wet-lab experiments

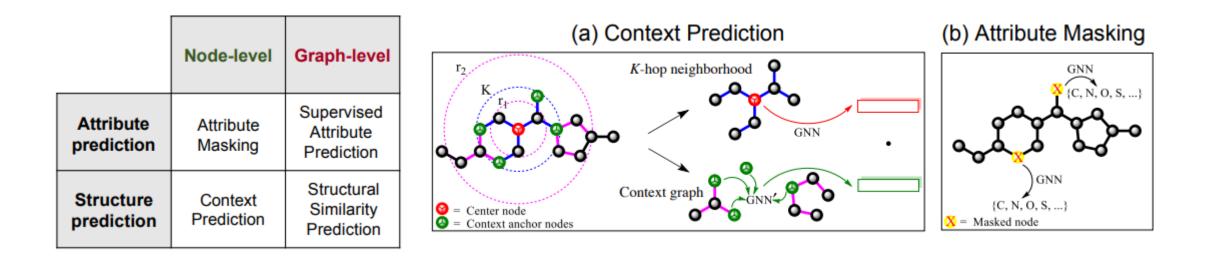
b. Negative Transfer

✓ Labels that are unrelated to downstream tasks may hurt the performance

Unsupervised pre-training strategies

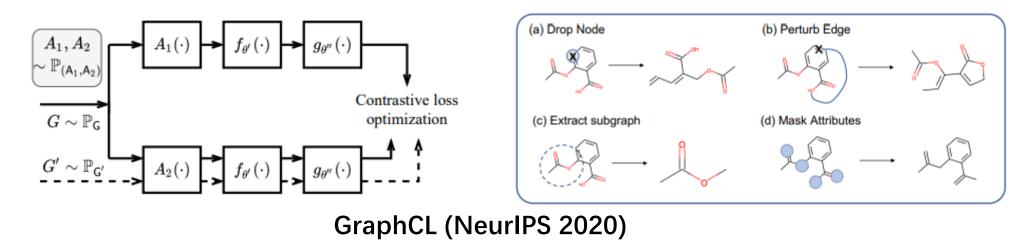


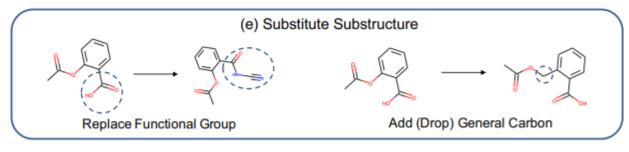
The Pioneering Work for GNNs Pre-training



Strategies for Pre-training Graph Neural Networks (Hu et al., ICLR 2020)

Data Augmentations in Graph Contrastive Learning

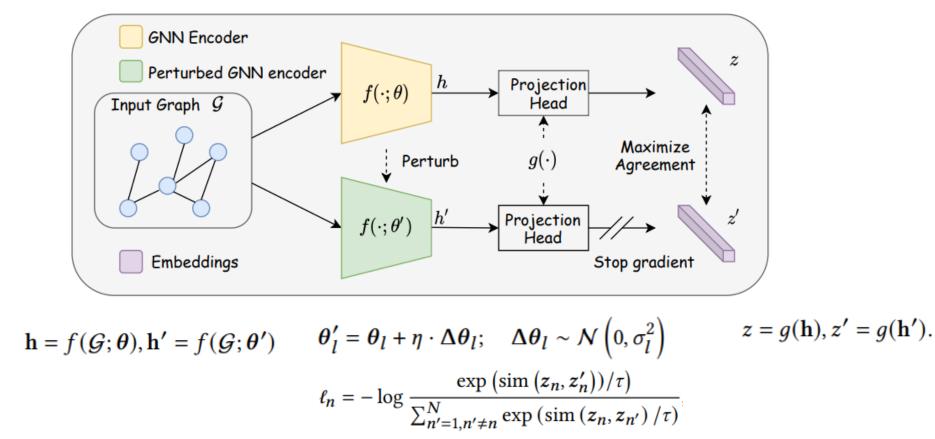




MoCL (KDD 2021)

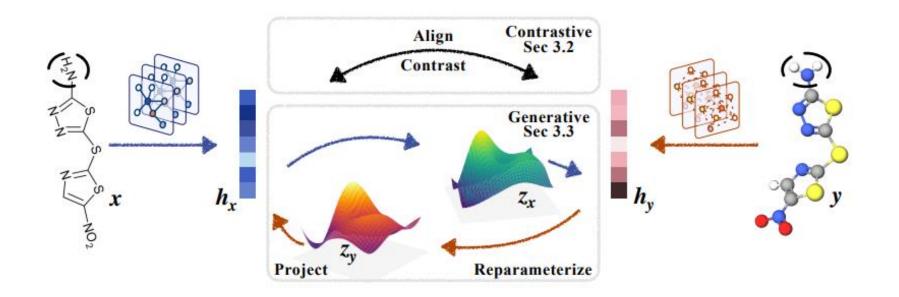
Graph Contrastive Learning with Augmentations (You et al., NeurIPS 2020) MoCL: Contrastive Learning on Molecular Graphs with Multi-level Domain Knowledge (Sun et al., KDD 2021)

SimGRACE: Augmentation-free in Graph Contrastive Learning



SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation (Xia et al., WWW 2022)

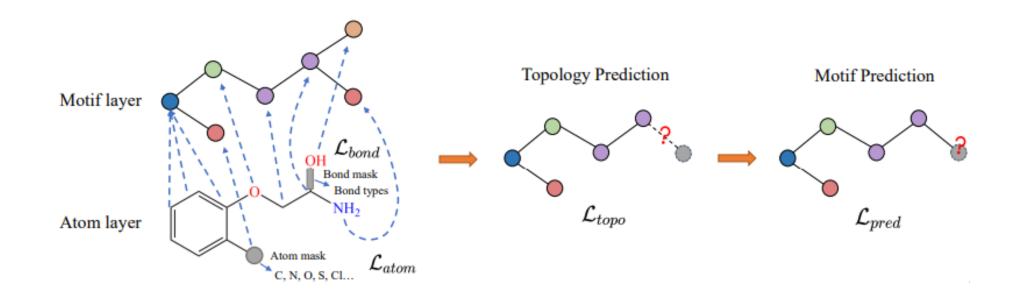
Knowledge-enriched GNNs Pre-training



GraphMVP: 3D Geometry (ICLR 2022)

Pre-training Molecular Graph Representation with 3D Geometry (Liu et al., ICLR 2022)

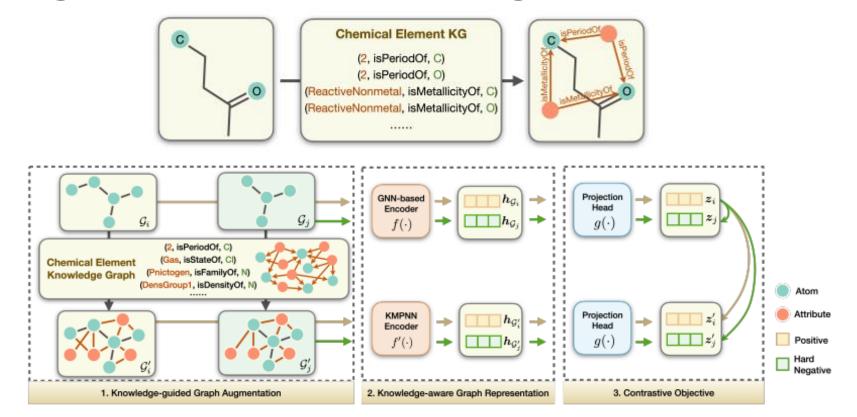
Knowledge-enriched GNNs Pre-training



MGSSL: Functional groups (NeurIPS 2021)

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction (Zhang et al., NeurIPS 2021)

Knowledge-enriched GNNs Pre-training



KCL: Knowledge graph (AAAI 2022)

Molecular Contrastive Learning with Chemical Element Knowledge Graph (Fang et al., AAAi 2022)

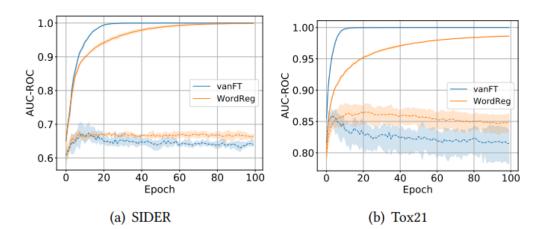
Open-sourced pre-trained Graph Models

Pre-trained GMs	Input	Architecture	Pre-training Task	Pre-training Database	#Params.	Model Availability
Hu et al. (Hu et al., 2020a)	2D Graph	5-layer GIN	GCP + MCM	ZINC15(2M) + ChEMBL(456K)	$\sim 2 {\rm M}$	~
GraphCL (You et al., 2020)	2D Graph	5-layer GIN	IND	ZINC15(2M) + ChEMBL(456K)	$\sim 2 {\rm M}$	\checkmark
JOAO (You et al., 2021)	2D Graph	5-layer GIN	IND	ZINC15(2M) + ChEMBL(456K)	$\sim 2 {\rm M}$	\checkmark
AD-GCL (Suresh et al., 2021)	2D Graph	5-layer GIN	IND	ZINC15(2M) + ChEMBL(456K)	$\sim 2 {\rm M}$	×
GraphLog (Xu et al., 2021c)	2D Graph	5-layer GIN	IND	ZINC15(2M) + ChEMBL(456K)	$\sim 2 {\rm M}$	\checkmark
MGSSL (Zhang et al., 2021b)	2D Graph	5-layer GIN	MCM + GAM	ZINC15 (250K)	$\sim 2 {\rm M}$	\checkmark
MPG (Li et al., 2021a)	2D Graph	MolGNet (Li et al., 2021a)	RCD + MCM	ZINC + ChEMBL (11M)	53M	×
LP-Info (You et al., 2022)	2D Graph	5-layer GIN	IND	ZINC15(2M) + ChEMBL(456K)	$\sim 2 {\rm M}$	\checkmark
SimGRACE (Xia et al., 2022a)	2D Graph	5-layer GIN	IND	ZINC15(2M) + ChEMBL(456K)	$\sim 2 {\rm M}$	\checkmark
GROVER (Rong et al., 2020)	2D Graph	GTransformer (Rong et al., 2020)	GCP + MCM	ZINC + ChEMBL (10M)	48M~100M	\checkmark
MolCLR (Wang et al., 2021b)	2D Graph	GCN + GIN	IND	PubChem (10M)	N/A	\checkmark
DMP (Zhu et al., 2021)	2D Graph	DeeperGCN + Transformer	MCM + IND	PubChem (110M)	104.1 M	×
ChemRL-GEM (Fang et al., 2021)	2D Graph + Geometry	GeoGNN (Fang et al., 2021)	MCM+GCP	ZINC15 (20M)	N/A	✓
KCL (Fang et al., 2022)	2D Graph + KG	GCN + KMPNN (Fang et al., 2022)	IND	ZINC15 (250K)	<1M	\checkmark
3D Infomax (Stärk et al., 2021)	2D and 3D molecules	PNA (Corso et al., 2020)	IND	QM9(50K) + GEOM(140K) + QMugs(620K)	N/A	\checkmark
Graphomer (Ying et al., 2021)	2D Graph	Graphomer (Ying et al., 2021)	Supervised	PCQM4M-LSC (~3.8M)	N/A	\checkmark
GraphMVP (Liu et al., 2022)	2D and 3D molecules	5-layer GIN + SchNet (Schütt et al., 2017)	IND + GAEs	GEOM (50k)	$\sim 2 {\rm M}$	\checkmark
Denoising (Zaidi et al., 2022)	2D and 3D molecules	GNS (Sanchez-Gonzalez et al., 2020)	GDM	PCQM4Mv2(~3.4 M)	N/A	×

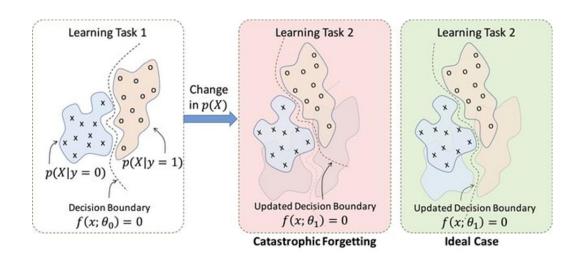
- Backgrounds
- Encoder Architectures
- Pre-training Strategies
- Tuning Strategies
- Applications
- Conclusions & Future Outlooks

Tuning Strategies

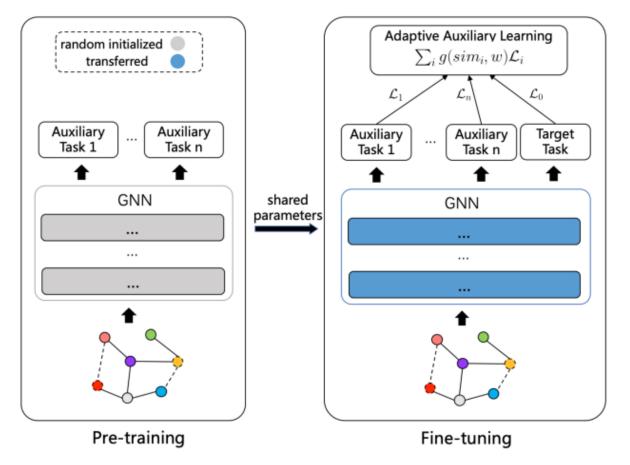
- Challenges & Solutions
 - a. Poor Generalization



b. Catastrophic Forgetting



Challenges & Solutions



Adaptive Transfer Learning on Graph Neural Networks (Han et al., KDD 2021)

- Backgrounds
- Encoder Architectures
- Pre-training Strategies
- Tuning Strategies
- Applications
- Conclusions & Future Outlooks

Applications

Dataset	Task	#Tasks	#Molecules	#Proteins	#Molecule-Protein	#Molecule-Molecule
BBBP	MPP (Classification)	1	2,039	_	_	_
Tox21	MPP (Classification)	12	7,831	_	_	_
ToxCast	MPP (Classification)	617	8,576	_	_	_
Sider	MPP (Classification)	27	1,427	_	_	_
ClinTox	MPP (Classification)	2	1,478	_	_	_
MUV	MPP (Classification)	17	93,087	_	_	_
HIV	MPP (Classification)	1	41,127	_	_	_
Bace	MPP (Classification)	1	1,513	_	_	_
ogbg-molpcba	MPP (Classification)	128	437,929	_	_	_
Malaria	MPP (Regression)	1	9,999	_	_	
CEP	MPP (Regression)	1	29,978	_	_	
ESOL	MPP (Regression)	1	1,128	_	_	_
FreeSolv	MPP (Regression)	1	643	_	_	_
Lipophilicity	MPP (Regression)	1	4,200	_	_	_
Delaney	Regression	1	1,128	_	_	
QM ₇	MPP (Regression)	1	6,830	_	_	_
QM8	MPP (Regression)	12	21,786	_	_	_
QM9	MPP (Regression)	3	133,885	_	_	_
Alchemy	MPP (Regression)	12	119,487	_	-	_
TWOSIDES	DDI (Classification)	1	3,300	_	_	63,000
DeepDDI	DDI (Classification)	1	192,284	_	-	19,187
Davis	DTI (Regression)	1	68	379	30,056	_
KIBA	DTI (Regression)	1	2,068	229	118,254	_
C. Elegans	DTI (Regression)	1	1,434	2,504	4,000 (positive interactions)	_
Human	DTI (Regression)	1	1,502	852	3,369 (positive interactions)	_

Pre-training Graph Neural Networks for Molecular Representations: Retrospect and Prospect (Xia et al., Ai for Science @ ICML 2022)

- Backgrounds
- Encoder Architectures
- Pre-training Strategies
- Tuning Strategies
- Applications
- Conclusions & Future Outlooks

Future Outlooks

- Better Knowledge Transfer
- Better Encoder Architectures, Tasks for Pre-training on Molecular Graphs
- More Reliable Benchmarks for Fair Evaluation
- Interpretability of Pre-trained GMs
- Broader Scope of Applications

Concluding Remarks

- Useful Resources
 - a. The first comprehensive survey of pre-training on molecular graphs.
 - ✓ <u>https://bit.ly/PGMs_survey</u>
 - ✓ Journal version is under review.
 - b. A curated list of must-read papers, open-source pre-trained models and pre-training datasets.
 - ✓ <a>https://bit.ly/PGM_resources

Thank you!

xiajun@westlake.edu.cn

JunXia_Westlake

