

Accelerate Drug Discovery with Pre-learned Potential

Jun Xia @ Westlake Univ. Advisor: Stan Z. Li (IEEE Fellow)

CONTENTS

O1 Myself
O2 Mole-BERT (ICLR' 23)
O3 Independent Feature Embedding (NeurIPS'23)

Myself

Profile

Hi there! I am Jun Xia, a Ph.D. student at Westlake University and Zhejiang University, advised by Chair Prof. Stan Z. Li. Before Joining Westlake, I received my B.E. degree with honors from Central South University in 2020. My primary research interests lie in Graph Machine Learning, with special emphasis on its applications in Drug Discovery and Computational Biochemistry.

Jun Xia 夏俊

Ph.D. Student School of Engineering Westlake University & Zhejiang University Email: xiajun@westlake.edu.cn Advisor: Stan Z. Li (IEEE Fellow)

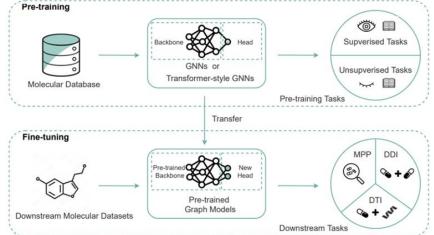
Academic Service

- Program Committee Member:
 Conferences: ICLR, ICML, NeurIPS, KDD, ACL, SDM, ECML, ICASSP, etc.
- Journal Reviewer: IEEE TIP, ACM TKDD, IEEE TNNLS, Neural Networks, etc.

Awards & Honors

- 2023: Westlake Presidential Awards (The highest honor at Westlake Univ.).
- 2022: National Scholarship.
- 2022: ICML 2022 Participation Grant.
- 2021: Outstanding Student Cadre, Zhejiang University.
- 2021: Outstanding Student, Zhejiang University.

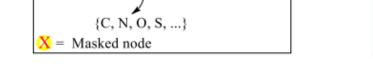
Pre-training on Molecules



AttrMasking, ICLR'20

GNN

Pretraining-finetuning paradigm



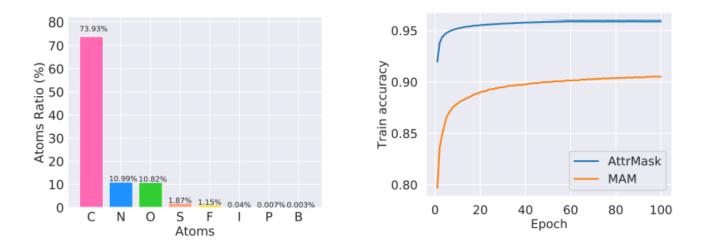
GNN

C, N, O, S, ...}

Strategies for Pre-training Graph Neural Networks (Hu et al., ICLR 2020)

CLR

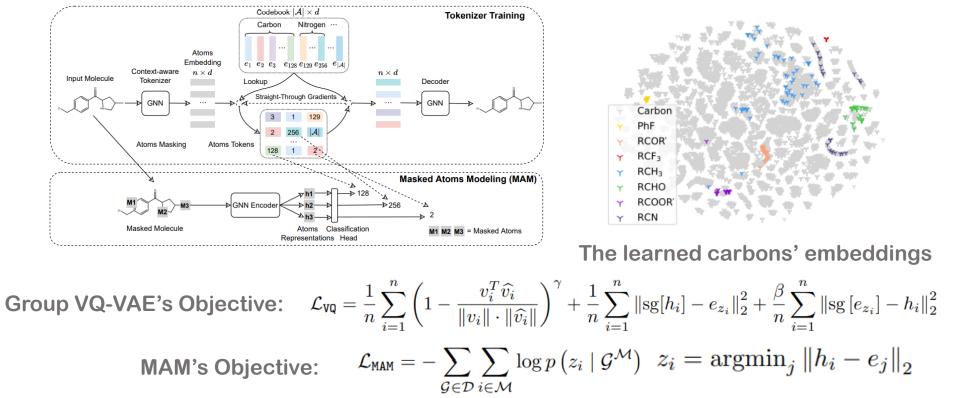
Why the negative transfer issue would occur?



The atom vocabulary is extremely small and unbalanced

The pre-training task is too simple to learn informative representations

Node-level: Masked Atoms Modeling (MAM)



Mole-BERT (ICLR '23)

ICLR

1.2

1.0

Density 9.0 8.0

0.4

0.2

0.0 - 0.5

0.0

0.5

Cosine Similarity

(a) MAM

1.0

0.8

Density 9.0

0.4

0.2

0.0

-0.5

0.0

(b) MAM + TMCL (Mole-BERT)

Cosine Similarity

Random

1.0

Similar

$$\mathcal{L}_{\text{tri}} = \sum_{\mathcal{G} \in \mathcal{D}} \max \left(sim \left(\mathbf{h}_{\mathcal{G}}, \mathbf{h}_{\mathcal{M}_{2}} \right) - sim \left(\mathbf{h}_{\mathcal{G}}, \mathbf{h}_{\mathcal{M}_{1}} \right) + m, 0 \right)$$

TMCL's Objective: $\mathcal{L}_{\text{TMCL}} = \mathcal{L}_{\text{con}} + \lambda \mathcal{L}_{\text{tri}}$, where $\mathcal{L}_{\text{con}} = -\sum_{\mathcal{G} \in \mathcal{D}} \log \frac{e^{sim(\mathbf{h}_{\mathcal{M}_{1}}, \mathbf{h}_{\mathcal{M}_{2}})/\tau}}{\sum_{\mathcal{G}' \in \mathcal{B}} e^{sim(\mathbf{h}_{\mathcal{M}_{1}}, \mathbf{h}_{\mathcal{G}'})/\tau}}$

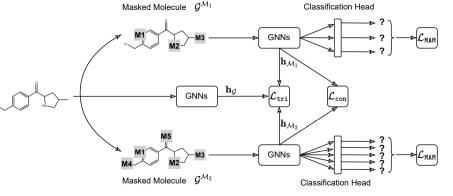
 $\textbf{Mole-BERT's Objective:} \quad \mathcal{L}_{\texttt{Mole}-\texttt{BERT}} = \mathcal{L}_{\texttt{MAM}} + \mathcal{L}_{\texttt{TMCL}}$

Random

1.0

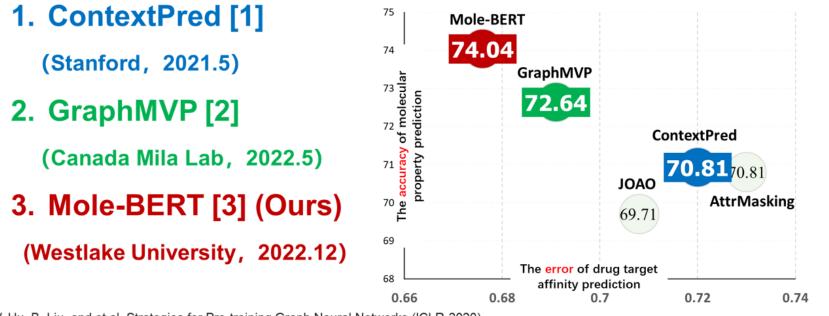
Similar

0.5



ICLR

Results

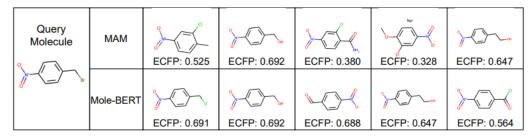


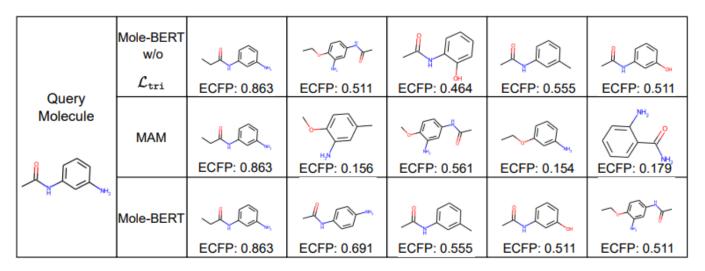
[1] W. Hu, B. Liu, and et al. Strategies for Pre-training Graph Neural Networks (ICLR 2020)

[2] S. Liu, H. Wang, and et al. Pre-training Molecular Graph Representation with 3D Geometry (ICLR 2022)

[3] J. Xia, C. Zhao, and S. Z. Li. Mole-BERT: Rethinking Pre-training Graph Neural Networks for Molecules (ICLR 2023)

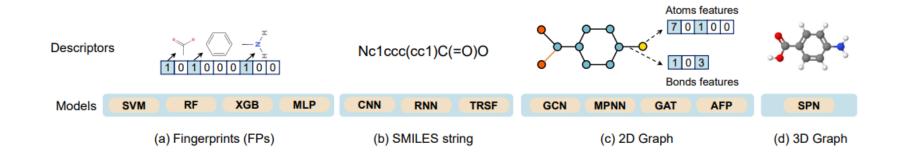
Molecule Retrieval





NEURAL INFORMATION PROCESSING SYSTEMS

Molecular Descriptors & Machine Learning Models



Results & Observations

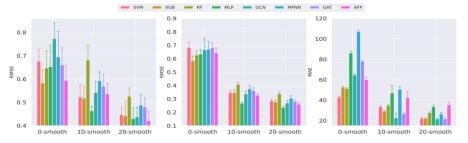
Dataset (No.)	Metric	SVM	XGB	RF	CNN	RNN	TRSF	MLP	GCN	MPNN	GAT	AFP	SPN
BACE (1,513)	AUC_ROC	0.886	0.896	0.890	0.815	0.559	0.835	0.887	0.880	0.846	0.886	0.879	0.882
HIV (40,748)	AUC_ROC	0.817	0.823	0.826	0.733	0.639	0.748	0.791	0.834	0.814	0.812	0.819	0.818
BBBP (2,035)	AUC_ROC	0.913	0.926	0.923	0.760	0.693	0.897	0.918	0.915	0.872	0.902	0.893	0.905
ClinTox (1,475)	AUC_ROC	0.879	0.919	0.933	0.685	0.813	0.963	0.890	0.889	0.868	0.891	0.907	0.912
SIDER (1,366)	AUC_ROC	0.626	0.638	0.644	0.591	0.515	0.641	0.617	0.633	0.603	0.614	0.620	0.613
Tox21 (7,811)	AUC_ROC	0.820	0.837	0.838	0.766	0.734	0.817	0.834	0.830	0.816	0.829	0.845	0.827
ToxCast (8,539)	AUC_ROC	0.725	0.785	0.778	0.735	0.74	0.780	0.781	0.767	0.736	0.768	0.788	0.772
MUV (93,087)	AUC_PRC	0.093	0.072	0.069	0.045	0.094	0.059	0.018	0.056	0.019	0.055	0.044	0.058
SARS-CoV-2 (14,332)	AUC_ROC	0.599	0.700	0.686	0.688	0.649	0.643	0.638	0.646	0.640	0.683	0.651	0.663
ESOL (1,127)	RMSE	0.676	0.583	0.647	2.569	1.511	0.718	0.653	0.773	0.695	0.661	0.594	0.671
Lipop (4,200)	RMSE	0.683	0.585	0.626	1.016	1.207	0.947	0.633	0.665	0.669	0.680	0.664	0.630
FreeSolv (639)	RMSE	1.063	0.715	1.014	2.275	2.205	1.504	1.046	1.316	1.327	1.304	1.139	1.159
QM7 (6,830)	MAE	42.814	52.726	51.403	81.165	158.160	64.363	86.060	64.530	107.013	78.217	59.973	55.727
QM8 (21,786)	MAE	0.0364	0.0126	0.0098	0.0205	0.0295	0.0232	0.0104	0.0154	0.0109	0.0187	0.0098	0.0103

Benchmarking results

- Key observations:
 - Deep models underperform non-deep ones in most cases.
 - It is irregular data patterns, NOT solely the small size of molecular datasets to blame for the failure of deep models!
 - Tree models (XGB and RF) exhibit a particular advantage over other models.

NEURAL INFORMATION PROCESSING SYSTEMS

Explanation 1: Deep models struggle to learn non-smooth target functions that map molecules to properties.



Results on smoothed datasets

Target name (Response type)	Metric	SVM	XGB	RF	CNN	RNN	TRSF	MLP	GCN	MPNN	GAT	AFP
CB1 (Agonism EC ₅₀)	$RMSE_{nc}$ $RMSE_{c}$ ΔR	0.652 0.773 18.55%	0.623 0.767 23.11%	0.619 0.770 24.39%	0.934 0.944 1.15%	0.712 0.823 15.59%	0.785 0.888 13.12%	0.707 0.807 14.1%	0.932 0.992 6.37%	0.938 0.989 5.47%	0.960 0.975 1.55%	0.909 0.967 6.35%
DAT (Inhibition K _i)	$RMSE_{nc}$ $RMSE_{c}$ ΔR	0.744	0.579 0.696 20.18%	0.577 0.730 26.64%	0.871 0.894 2.48%	0.692 0.783 13.15%	0.801 0.934 16.70%	0.664 0.792 19.40%	0.927 1.003 8.23%	0.820 0.921 12.38%	0.995 1.042 4.74%	0.865 0.995 15.11%
PPAR α (Agonism EC ₅₀)	$\frac{\text{RMSE}_{\text{nc}}}{\text{RMSE}_{\text{c}}}$ $\Delta \mathcal{R}$	0.671	0.552 0.678 22.83%	0.561 0.685 22.10%	0.854 0.962 12.69%	0.696 0.825 15.64%	0.799 0.968 21.26%	0.606 0.713 17.77%	0.856 0.870 1.72%	0.833 0.872 4.78%	0.892 0.929 4.21%	0.749 0.823 9.90%
DOR (Inhibition K _i)	$RMSE_{nc}$ $RMSE_{c}$ ΔR	0.598 0.861 43.98%	0.592 0.854 44.14%	0.591 0.836 41.46%	0.938 1.098 17.06%	0.893 1.036 16.01 %	0.873 1.032 18.26%	0.663 0.874 31.85%	1.095 1.259 14.93%	0.958 1.152 20.27%	1.102 1.281 16.26%	1.018 1.179 15.83%

The superiority of deep models

K = 126 nM

Image

Activity cliffs

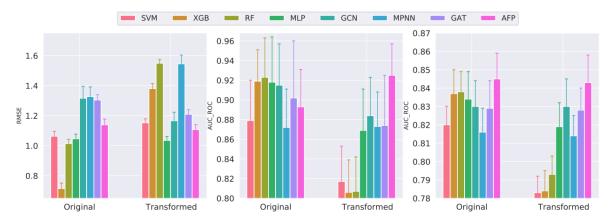
K = 3 nM

Chemical molecule

Data smoothing level

Results on activity cliffs

Explanation 2: Deep models mix different dimensions of molecular features, whereas tree models make decisions based on each dimension of the features separately.



Results on orthogonally transformed datasets

$$\widehat{x_{i}} = \underbrace{\mathcal{Q}}_{i} x_{i}, \ y_{i} = W^{\top} x_{i} + b, \ \mathcal{Q}^{-1} = \mathcal{Q}^{\top} \ y_{i} = \widehat{W}^{\top} \widehat{x_{i}} + b = \widehat{W}^{\top} \mathcal{Q} x_{i} + \widehat{b}, \ \widehat{W} = \mathcal{Q} W$$
Orthogonal matrix

Independent Feature Embedding

$$f_x = [\sin(v)||\cos(v)], \quad v = [2\pi c_1 x, \dots, 2\pi c_k x]$$

Deep models can be approximated as Neural Tangent Kernel

$$h_{\mathrm{NTK}}\left(f_{x_{i}}^{\mathrm{T}}f_{x_{j}}\right) = h_{\mathrm{NTK}}\left(g_{\boldsymbol{c}}\left(x_{i}-x_{j}\right)\right)$$

$$k_{\text{NTK}}(x_i, x_j) = \mathbb{E}_{\theta \sim \mathcal{N}} \left\langle \frac{\partial f(x_i; \theta)}{\partial \theta}, \frac{\partial f(x_j; \theta)}{\partial \theta} \right\rangle$$

IFM creates a tunable stationary **NTK**

$$f_{x_i} \cdot f_{x_j} = \sum_{i=1}^k \cos(2\pi c_i (x_i - x_j)) := g_c (x_i - x_j),$$

• IFM improves deep models' performance on molecules

							-					
Dataset (No.)	Metric	MLP	GCN	MPNN	GAT	AFP	P-Best (Model)	IFM-MLP	IFM-GCN	IFM-MPNN	IFM-GAT	IFM-AFP
BACE (1,513)	AUC_ROC	0.887	0.880	0.846	0.886	0.879	0.896 (XGB)	0.915	0.903	0.866	0.894	0.907
HIV (4,0748)	AUC_ROC	0.791	0.834	0.814	0.812	0.819	0.834 (GCN)	0.816	0.862	0.846	0.838	0.849
BBBP (2,035)	AUC_ROC	0.918	0.915	0.872	0.902	0.893	0.926 (XGB)	0.937	0.945	0.908	0.933	0.940
ClinTox (1,475)	AUC_ROC	0.890	0.889	0.868	0.891	0.907	0.963 (TRSF)	0.941	0.938	0.929	0.953	0.959
SIDER (1,366)	AUC_ROC	0.617	0.633	0.603	0.614	0.620	0.644 (RF)	0.646	0.649	0.638	0.647	0.652
Tox21 (7,811)	AUC_ROC	0.834	0.830	0.816	0.829	0.845	0.845 (AFP)	0.842	0.839	0.837	0.849	0.853
ToxCast (8,539)	AUC_ROC	0.781	0.767	0.736	0.768	0.788	0.788 (AFP)	0.795	0.790	0.772	0.797	0.806
MUV (93,087)	AUC_PRC	0.018	0.056	0.019	0.055	0.044	0.093 (SVM)	0.052	0.113	0.068	0.124	0.097
SARS-CoV-2 (14,332)	AUC_ROC	0.638	0.646	0.640	0.683	0.651	0.700 (XGB)	0.675	0.682	0.686	0.716	0.704
ESOL (1,127)	RMSE	0.653	0.773	0.695	0.661	0.594	0.583 (XGB)	0.587	0.728	0.673	0.566	0.561
Lipop (4,200)	RMSE	0.633	0.665	0.669	0.680	0.664	0.585 (XGB)	0.556	0.577	0.568	0.584	0.578
FreeSolv (639)	RMSE	1.046	1.316	1.327	1.304	1.139	0.715 (XGB)	0.862	0.916	0.911	0.908	0.883
QM7 (6,830)	MAE	86.060	64.530	107.013	78.217	59.973	42.814 (SVM)	66.570	38.793	84.918	59.595	33.775
QM8 (21,786)	MAE	0.0104	0.0154	0.0109	0.0187	0.0098	0.0098 (AFP)	0.0091	0.0114	0.0085	0.0139	0.0079

Results on Normal Molecular Datasets

											·	
Target name (Response type)	Metric	MLP	GCN	MPNN	GAT	AFP	P-Best (Model)	IFM-MLP	IFM-GCN	IFM-MPNN	IFM-GAT	IFM-AFP
CB1 (Agonism EC ₅₀)	RMSE _c	0.807	0.992	0.989	0.975	0.967	0.767 (XGB)	0.715	0.748	0.756	0.741	0.746
DAT (Inhibition K_i)	$RMSE_c$	0.792	1.003	0.921	1.042	0.995	0.696 (XGB)	0.646	0.682	0.673	0.665	0.670
PPAR α (Agonism EC ₅₀)	RMSE_{c}	0.713	0.870	0.872	0.929	0.823	0.671 (SVM)	0.623	0.634	0.649	0.661	0.616
DOR (Inhibition K_i)	RMSE_{c}	0.874	1.259	1.152	1.281	1.179	0.836 (RF)	0.787	0.813	0.796	0.799	0.810

Results on Activity Cliff Cases

THANKS

Jun Xia @ Westlake Univ. Homepage: <u>https://junxia97.github.io/</u>

